حسابي

بحث

القائمة

تفاصيل العمل

This project upgrades a previous PDF reader by integrating Retrieval-Augmented Generation (RAG) with LangGraph orchestration for smarter, faster, and context-aware responses.

Workflow:

1.Initial Synthesis – Uses local data for first-pass answers.

2.Tool & Retrieval Check – If needed, invokes external tools (Wikipedia, Arxiv) or searches vector DBs.

3.Final Synthesis – Consolidates all sources into a coherent answer.

Key Features:

•RAG:

•Local: Chroma stores embedded PDF chunks (Ollama’s mxbai-embed-large:latest).

•External: AstraDB + FAISS via a HybridRetriever (ID + semantic search).

•LLM: Powered by ChatGroq (llama-3.3-70b-versatile) for ultra-fast inference.

•Tooling: Wikipedia & Arxiv invoked only when needed.

•Orchestration: LangGraph/StateGraph enables modular, scalable pipelines.

Stack:

•LLM: ChatGroq

•Embeddings: Ollama

•Vector DB: Chroma + AstraDB + FAISS

•Tools: Wikipedia, Arxiv

•Orchestration: LangGraph

This system delivers real-time, highly relevant responses by blending local vector search, external knowledge sources, and state-driven orchestration.

بطاقة العمل

اسم المستقل Omar S.
عدد الإعجابات 0
عدد المشاهدات 3
تاريخ الإضافة