1.importing libraries , exploring data
2.( Nan values (SimpleImputer "most_frequent"
2.outliers (IQR)
3. Encoding (OneHotEncoder - LabelEncoder)
4.(StratifiedKFold)Visualization and Splitting the Data
5.Normalization (PowerTransformer)
6.Classifiers Models : 12 Machine Learning Moddel is Applied to the data set , and finally ( Grid Search & Random Search ) for the best model