تفاصيل العمل

A compact movie recommendation system that analyzes The Movies Dataset to deliver personalized suggestions. The project explores three main recommendation strategies: Collaborative Filtering, Content-Based Filtering, and Hybrid Filtering—and evaluates multiple algorithms across a dataset of 45,000 movies and 270,000 user ratings. Key steps include data cleaning, integration, preprocessing, and model benchmarking to identify effective approaches for predicting user preferences.

ملفات مرفقة

بطاقة العمل

اسم المستقل
عدد الإعجابات
0
عدد المشاهدات
10
تاريخ الإضافة
تاريخ الإنجاز
المهارات