تفاصيل العمل

This project implements a computer vision and deep learning solution to detect driver drowsiness in real-time. Using CNN (MobileNet with Transfer Learning), the system classifies whether eyes are open or closed with high accuracy (AUC ≈ 0.99).

Key features:

Binary classification (open vs. closed eyes) from live webcam feed.

Real-time eye and face detection using OpenCV Haar Cascades.

Alarm system triggers if eyes remain closed beyond a set duration.

Achieved 98%+ accuracy, precision, and recall on test data.

This project demonstrates the use of TensorFlow, OpenCV, and deep learning for practical safety applications, especially in preventing accidents caused by driver fatigue.

بطاقة العمل

اسم المستقل
عدد الإعجابات
0
عدد المشاهدات
1
تاريخ الإضافة
تاريخ الإنجاز
المهارات