Admission Prediction Using Decision Trees and Random Forests

تفاصيل العمل

This project builds a machine learning pipeline to predict graduate admission likelihood based on applicant profiles. Using Decision Tree and Random Forest classifiers, the dataset is preprocessed with imputation and scaling, followed by cross-validation and hyperparameter tuning via GridSearchCV. Model performance is evaluated through confusion matrices, ROC curves, and AUC scores, achieving strong predictive accuracy for admission outcomes.

بطاقة العمل

اسم المستقل
عدد الإعجابات
0
عدد المشاهدات
1
تاريخ الإضافة