تفاصيل العمل

I'm excited to share my latest project Through my journy at NTI,

where I scraped real-world data from Amazon.eg, cleaned it, and applied data analysis.

Here's a breakdown of what I did:

1. Web Scraping (Selenium + BeautifulSoup)

Scraped data for gaming laptops (Name, Price, Rating, Availability)

Extracted multi-page results using dynamic page loading

Exported clean results to CSV

? 2. Data Cleaning & Feature Extraction

Extracted specs from product names (RAM, Processor, GPU) using regex

Unified formats (e.g., converting “16GB” text to numeric value)

Filled missing values using the most common entries

Removed duplicates and handled outliers

3. Data Analysis

Visualized distributions using boxplots and histograms

Analyzed top GPU trends and their frequencies

Explored relationships between RAM, Rating, Brand vs. Price

Used bar plots for brand insights

️ Tools Used:

Python, Pandas, Matplotlib, Seaborn, Selenium, BeautifulSoup

This project sharpened my skills in:

End-to-end data projects

Text feature engineering from messy real-world data

ملفات مرفقة

بطاقة العمل

اسم المستقل
عدد الإعجابات
0
عدد المشاهدات
10
تاريخ الإضافة
تاريخ الإنجاز
المهارات