Project description. This project focuses on predicting customer churn using various machine learning classifiers, including Logistic Regression, Decision Trees, Random Forest, SVM, XGBoost, CatBoost, and LightGBM. The goal is to evaluate each model’s performance based on accuracy, precision, recall, and F1 score to identify the most effective method for predicting customer retention. The project utilizes Python libraries such as scikit-learn, pandas, and visualization tools like Seaborn and Matplotlib to derive insights and visualize model performance.lessabout the product
Machine Learning Tools
MATLAB, NumPy, pandas, Python, Python Scikit-Learn, scikit-learn, XGBoost
اسم المستقل | مينا ح. |
عدد الإعجابات | 0 |
عدد المشاهدات | 5 |
تاريخ الإضافة | |
تاريخ الإنجاز |